On some estimates and Carleson type measure for multifunctional holomorphic spaces in the unit ball
نویسندگان
چکیده
منابع مشابه
Weighted Iterated Radial Composition Operators between Some Spaces of Holomorphic Functions on the Unit Ball
and Applied Analysis 3 where dV z is the Lebesgue volume measure on B. Some facts on mixed-norm spaces in various domains in C can be found, for example, in 6–8 see also the references therein . For 0 < p < ∞ the Hardy space H B H consists of all f ∈ H B such that ∥ ∥f ∥ ∥ Hp : sup 0<r<1 (∫ ∂B ∣ ∣f rζ ∣ ∣dσ ζ )1/p < ∞. 1.10 For p 2 the Hardy and the weighted Bergman space are Hilbert. Let φ be ...
متن کاملZygmund-Type Spaces on the Unit Ball
Let H B denote the space of all holomorphic functions on the unit ball B ⊂ C. This paper investigates the following integral-type operator with symbol g ∈ H B , Tgf z ∫1 0 f tz Rg tz dt/t, f ∈ H B , z ∈ B, whereRg z ∑n j 1 zj∂g/∂zj z is the radial derivative of g. We characterize the boundedness and compactness of the integral-type operators Tg from general function spaces F p, q, s to Zygmund-...
متن کاملBesov spaces and Carleson measures on the ball
Carleson and vanishing Carleson measures for Besov spaces on the unit ball of CN are defined using imbeddings into Lebesgue classes via radial derivatives. The measures, some of which are infinite, are characterized in terms of Berezin transforms and Bergman-metric balls, extending results for weighted Bergman spaces. Special cases pertain to Arveson and Dirichlet spaces, and a unified view wit...
متن کاملHolomorphic Mean Lipschitz Spaces and Hardy Sobolev Spaces on the Unit Ball
For points z = (z1, · · · , zn) and w = (w1, · · · , wn) in C we write 〈z, w〉 = z1w1 + · · ·+ znwn, |z| = √ |z1| + · · ·+ |zn|. Let B = {z ∈ C : |z| < 1} denote the open unit ball and let S = {ζ ∈ C : |ζ| = 1} denote the unit sphere in C. The normalized Lebesgue measures on B and S will be denoted by dv and dσ, respectively. Let H(B) denote the space of all holomorphic functions in B. Given 0 <...
متن کاملA Carleson Type Condition for Interpolating Sequences in the Hardy Spaces of the Ball of C
In this work we prove that if S is a dual bounded sequence of points in the unit ball B of C for the Hardy space H(B), then S is H(B) interpolating with the linear extension property for any s ∈ [1, p[.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin des Sciences Mathématiques
سال: 2010
ISSN: 0007-4497
DOI: 10.1016/j.bulsci.2008.04.003